Evaluation Skills Part 1: Torticollis

Samantha Arritt, PT, DPT

Objectives:

- · To define what torticollis is
- To identify 6 types of torticollis
- · To evaluate torticollis using SOAP format
- To apply the PIQ tool when assessing torticollis
- To identify 4 treatment techniques for torticollis

PIQ

- Posture in Positions
- Initiation and Inhibition
- Quality and Quantity

PIQ								
	Supine	Prone	Sitting	Standing	Quadruped	Kneeling		
Posture in Positions								
Initiates								
Can't Do								
Quality								

Posture in Positions

- What are they doing in:
 - Supine
 - Prone
 - Sitting
 - Standing
 - Quadruped
 - Kneeling

Initiation and Inhibition

- · Observe what movements the child initiates
- What functional movements can they do

 Can they feed themselves? Rotate to reach for objects?
- What parts of their body are they using for the movements?
- What is inhibiting them from initiating other movements? Are they stuck in one position? Is this a primitive reflex?
- · Can they sustain and terminate movements?
- · What transitions do they initiate?

Quality and Quantity

- How do they initiate the movements (body part flexion, extension, dissociation)?
- Where is the head in relation to the body during transitions?
- Are they using one side of their body more than another?
- Are they using mass patterns of flexion or extension?
- · What is the speed of their movements?
- Are they using a more immature pattern of movement?
- · Is there any change in respiratory pattern?

Torticollis

- Torticollis ("twisted neck"); Plagiocephaly ("oblique head")
- Back-to-sleep program started in 1992, with 40% decrease in SIDS and increase in posterior plagiocephaly and torticollis¹

Torticollis

- · Causes:
 - May be related to:
 - Intrauterine malpositioning
 - Ischemic event and compartment syndrome
 - Birth trauma

Torticollis

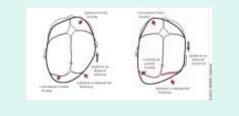
- Prone positioning for 1 hour and 21 minutes a day when awake for 4 month olds = significant differences in milestone achievement²
 - hands and knees
 - active extension
 - sitting skill progression
 - prone positioning helps with other anti-gravity and weight bearing skills

Torticollis associated with:

- 1. Benign Paroxysmal Torticollis
- 2. Plagiocephaly without synostosis (PWS)
- 3. Plagiocephaly with synostosis
- 4. Vertebral anomalies
- 5. Ocular torticollis
- 6. Idiopathic Muscular Torticollis (congenital)

Benign Paroxysmal Torticollis

- When a child presents with a different tilt each visit
- Look for:
 - a family history of vestibular problems
 - a family history of migraines
 - on medication REGLAN (for severe GERD)


Plagiocephaly without Synostosis

- AKA: Postural torticollis
- Onset is immediately after birth
- No fibrotic changes in muscle
- Related to preferred sleeping position
- Easily treated with passive muscle stretching and re-positioning program if caught early

Plagiocephaly with Synostosis

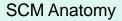
- Early closure of sutures of the skull (normally between 12-18 months)
 – Increased ICP
 - Vision, hearing, and breathing problems
- Head shaped like a trapezoid
- Ear positioned posteriorly
- Smaller vertical length of face and horizontal length may be larger
- Requires surgery

Deformational Plagiocephaly vs Plagiocephaly with Synostosis

Vertebral Anomalies

- · Klippel-Feil anomaly (bony anomaly)
 - Fusion of any 2 of the 7 cervical vertebrae
 - Failure of division of cervical vertebrae during early fetal development
 - Leads to scoliosis and head tilt
 - Identified by cervical spine x-rays
 - Associated defects: anomalies of kidneys, ribs, cleft palate, respiratory problems, heart malformation

Klippel-Feil Anomaly



Ocular Torticollis

- Most commonly paresis of superior oblique (turns eye down and out) innervated by cranial nerve 4 (trochlear)
- May also be CN 3 (oculomotor)
- Persistent head tilt resulting in secondary neck contractures
- · Not likely before 6 months of age
- · Sit up test:
 - Look at degree of torticollis in supine and sitting
 - If torticollis resolves in supine, it's ocular torticollis

Idiopathic Muscular Torticollis

- · Congenital
- Cause: fetal position, birth trauma, vascular injury to SCM
- See plagiocephaly with it- need to treat both
- · See 1-2 weeks after birth
- Some muscular fibrosis: either tumorous or bands
- · Trapezius muscle may be affected

Idiopathic Muscular Torticollis

- Risk factors for infants 7-12 weeks old³:
 - Sleeping in supine: 2.7x odds of getting posterior plagiocephaly
 - Males were 1.5x more likely to get posterior plagiocephaly
 - If they have a right sided or left sided head positional preference, this is a >4x the odds of developing posterior plagiocephaly
 - Most are right sided preference

Impact of Torticollis

- Altered perception of center of mass
- · Asymmetrical weight bearing
- Transitions affected by neck asymmetry
- Protective extension reactions may be delayed
- Compensations diminish development of midline postural control⁴

Before Treatment

- Decide origin of torticollis
 18% are non-muscular
- Do not start a stretching program until a cervical spine x-ray is performed^{5*}
- · *limited value of xrays in infants

Evaluating Torticollis

- SOAP format
- PIQ tool

Subjective (S)

- · Birth history
 - Pre or peri natal difficulties
 - Ultrasounds show restriction of space
- · Family history
- · Medical history
 - Reflux
 - · Sandifer's Syndrome
 - Neurological issues
 - X-rays of cervical spine
 Passed hearing and vision screening
- Typical day
 - How much time spent in "containment devices"

Objective (O)

- PIQ
 - Posture in Positions
 - · Face in midline in supine
 - · Describe flat spots, plagio- vs scapho- vs brachycephaly
 - Palpate neck (tight band?)
 - Palpate along sutures to check for ridging (want sutures open)
 - Cranial Vault Asymmetry Index

Brachycephaly vs Plagiocephaly vs Scaphocephaly

Objective (O)

- · Head righting reactions
 - full, partial, or no response
- Range of motion
 - Measure active and passive to both sides
 - neck rotation (100-120 degrees)
 - lateral flexion (>65 degrees)

Objective (O)

- Muscle Function Scale (MFS) for infants⁶
 - Hold infant vertically around trunk without support of head, then lower to horizontal position; have grid of horizontal lines behind; has to hold head for 5 seconds to get score
 - Rating scale of 0-4
 - 0= head below horizontal
 - 1= head in the horizontal
 - · 2= head slightly over horizontal
 - 3= head high over horizontal
 - 4= head very high over horizontal

Objective (O)

· Initiation and inhibition

- Look at anti- and pro- gravity movements
- Describe their movement patterns
- Asymmetrical neck extension to the side of tightness What can they NOT do?
 - Head righting reactions
 - · Protective reactions (delayed on opposite side of tilt)
 - Head control in various positions
 - · Difficulty reaching with upper extremities
 - Poor or asymmetrical upper extremity weight bearing in prone
 - · 2 handed play, hand transfer skills, grasping

Objective (O)

- · Quality and quantity
 - How are they rolling?
 - Lateral neck flexion at sidelying phase to both sides
 - How are they reaching for toys in prone?

Objective (O)

- · Sensation and perception
 - Visual tracking (peripheral and central)
 - Decreased visual engagement
 - Delayed visual convergence
 - Difficulty with downward gaze
 - Response to auditory input
 - Response to tactile input

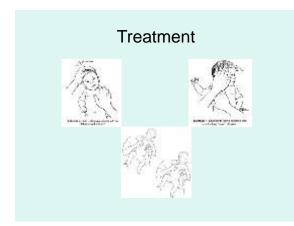
Plan (P)

- Goals:
 - Neutral head position
 - Full passive and active ROM into restricted areas
 - Correct movement patterns for ageappropriate movements (head righting during rolling)
 - Prevent facial and skull deformities
 - Prevent postural changes

Plan (P)

- Treatment algorithm for Muscular Torticollis7
 - 1. PT 6-8 weeks then re-evaluate
 - Improving: continue PT 6-8 more weeks
 - · Not improving: ophthalmological and neurological evaluation
 - · Persistent head tilt with tight band: consider surgery at 2-3 years 2. Persistent head tilt with negative medical workup and unclear
 - exam, check for:
 - C spine x-rays
 - C spine CT
 - Brain and C spine MRI

 - Most cases resolve within an average of 6 months
 90-99% resolve with conservative treatment


Treatment

- Massage
- Stretching of tight muscles (neck and trunk) Contraindications: Down Syndrome/ ligament laxity;
 Spina Bifida; Bony abnormalities; Compromised
- circulatory or respiratory system · Strengthening of weak muscles
- · Active positioning
- · Use of correct patterns for movement
- · Address deficits in developmental progression
- Referral for helmet? or Surgery?

Treatment

- Stretching
 - Lengthen anterior neck muscles (hand in V over sternum and child looks up- platysma) $% \left({{\left[{{{\rm{D}}_{\rm{T}}} \right]}_{\rm{T}}}} \right)$

 - Left and right rotation
 Left and right lateral neck flexion
 Suboccipital release
- Strengthening
 - Active lateral neck flexion ("active carrying")
 - Sidelying- lifting head against gravity
 - Righting reactions
- Range of motion
 - Active and passive neck rotation
 - Active and passive lateral neck flexion
 - Active and passive neck flexion and extension

Treatment

- · Kinesiotape:

 - Tape to facilitate SCM and upper trapezius on the weak side with no stretch to the tape
 Muscle-relaxing on affected side (across SCM with mild stretch)^{8*}
 - 3.Combination of both
- *study found muscle-relaxing technique was the most effective, but should be used with other interventions

Treatment

Treatment

- · Tortle
 - Good for younger, less active babies
- · The Lounger
 - Positions child in a flexed position with head in midline

Treatment

- Helmet
 - Based on literature, the most effective period for cranial remodeling is 4-12 months
 - Cranial remodeling in very young infants, birth to 5 months, can be influenced by re-positioning and handling
 - The FDA prohibits the dispensing of helmets for cranial remolding after 18 months of age

Treatment

- Helmet
 - Better outcome for helmet treatment vs natural course
 - Infant with helmets reached much better outcome within a shorter time
 - Helmet reduced initial asymmetry by 68%; non helmet reduced by 31%⁹

Treatment

- Helmet
 - Children over 12 months treated with helmet therapy had an improvement in skull shape in the same interval as younger infants¹⁰
 - Supports the use of helmets with children up to the age of 18 months of age

HEP

- HEP!!!!!!
 - 90 minutes/week of PT vs 166 hours at home
 - Stretching
 - Positioning (prone)
 - Visual tracking
 - Carrying to activate weak muscles (facilitate head righting)
 - Active cervical rotation in supine and prone
 - Active cervical rotation with reaching in supine
 - Overhead reaching to get UE stretching
 - ROLE: right on odd days, left on even days

HEP Protocols

- Exercises repeated throughout the day for 5x/day (or at every diaper change)
- Each stretch held for 30 seconds as tolerated
- Stretches done 4-5x/day (or at every diaper change)
- *Continue up to 3 months after discharge*¹¹

HEP Evidence

- Protocol¹²:
 - PTs doing stretching vs parents doing stretching
 - PTs: 3x/week; stretch from 10-30 seconds; each session about 15 minutes (parents did no stretching at home)
 - Parents: 3-5 short sessions, 2x/day; held stretch 10-30 seconds; lasted 15 minutes; did 7 days/week

HEP Evidence cont.

- Outcome:
 - All achieved good ROM but PT group achieved that ROM faster
 - PT achieved ROM within 0.9 months vs 3 months for parent group
 - "No head tilt" reached faster for PT group (2.5 months) vs 4.5 months for parent group
 - At first evaluation, 18 infants had plagiocephaly but only 2 had it after treatment

Resource for Families

• Video: www.HeadsUpBaby.com

- "Heads Up Baby: Prevention and early treatment of deformational plagiocephaly in your baby"
 - What is plagiocephaly: risk factors, prevention, treatment
 - · Altering home environment and re-positioning
 - · Tummy time and sitting activities
 - Strengthening and stretching activities

Resources

- · Karen Karmel-Ross book: TORTICOLLIS
- · On-line sources for pictures of stretches
 - Texas Pediatric Surgical Associate • www.pedisurg.com/PtEduc/Torticollis.htm
 - www.orthoseek.com/articles/ifs-left.html
 - www.torticolliskids.org/favorite.htm
 - www.cranialtech.com

References

- :
- .
- :
- All information written and presented by: Michelle Linehan MSPT,PCS,M.Ed Images: from google 1: Kinnay HC, Thach, BT (2009) 2: Ducket,L2:amy,S (2007) The effects of prone positioning of the quality and acquisition of developmental milestrones in four-month-old-infants. *Pediatric Physical Therapy*, 19, 48-55 3: Mawjie at (2014) 4: Oldexka et al (2013 APTA CSM) Olinical Approach to the Evaluation and Treatment of Congenital Muccular Torotoolis 5: Synder, EM, Coley, BD (2006) Limited value of plain radiographs in infant torticolis. *Pediatrics*, 118 (6),e1179-84 8: Ohman, et al (2008) 7: from presentation at APTA Combined Sections Meeting, Jan 2013; Magada Oledzka, PT, MBA, PCS; Maureen Suht PT, DPT, PCS; Roger Widmann, MD 8: Ohman (2012) 9: Kiluba, et al (2014) 10: Couruse Duk, PT, DPT, PCS; Roger Widmann, MD 10: Couruse Duk, PT, DPT, PCS; Roger Widmann, MD 12: Ohman, et al (2016) .
- :
- .
- .
- .